
Technische Universität Berlin

Fakultät IV

Diplomarbeit in Informatik

A Peer-to-peer Infrastructure for Social
Networks

Doris Schiöberg

17. Dezember 2008

Aufgabenstellerin: Prof. Anja Feldmann, Ph. D.

Betreuer: Dr. Sonja Buchegger

Prof. Anja Feldmann, Ph. D.

Abgabedatum: 18. Dezember 2008

Die selbständige und eigenhändige Ausfertigung versichert an Eides statt.
Berlin, den

Unterschrift

4

Abstract

Over the last years online social networks have become more and more popular. For
example several million are now participating in Facebook, one of the most famous
platforms. People store a lot of data within such networks. This entails giving the
data to a company as all these networks are server based. This data can then be
sold to other companies. As a consequence no one knows anymore where his data
is and what has been done with it. To give users back the control over their data,
we propose an approach for building an online social network using a peer-to-peer
infrastructure. Our approach includes encryption of the data. In this manner, the
data can be distributed, is not under the control of a company, and the user has full
control about who can access this data.

Sonja Buchegger and Anwitaman Datta proposed in [PSON] to build a peer-to-
peer system for social networks, called PeerSON. In this thesis we describe the design
and implementation of the peer-to-peer infrastructure for social networks without
central servers, including topology and protocols for information exchange.

6

Zusammenfassung

Soziale Netzwerke im Internet wurden über die letzten Jahre zunehmend beliebter.
Beispielsweise hat allein Facebook, eine der beknntesten Plattformen, mittlerweile
mehrere Millionen Mitglieder. Die Menschen legen enorme Datenmengen in solchen
Nezwerken ab, was gleichzeitig bedeutet, diese Daten einer privaten Firma zu geben,
da alle diese Plattformen serverbasiert arbeiten. Eine Konsequenz daraus ist, dass
praktisch niemand mehr weiss, wo all diese Daten tatsächlich landen. Wir stellen in
dieser Arbeit einen Ansatz vor, mit dem die Kontrolle über die Daten wieder an den
Benutzer zurückgegeben werden soll; ein soziales Netzwerk, basierend auf einer Peer-
to-Peer Infrastruktur, in der die Daten verschlüsselt werden. Durch dieses System
werden die Daten im Netz verteilt, werden der Kontrolle einer einzelnen Firma
entzogen und der Benutzer erhält die volle Kontrolle darüber, wer Zugriff auf seine
Daten hat.

Sonja Buchegger und Anwitaman Datta schlagen in [PSON] vor, ein System für
soziale Netzwerke zu entwickeln, das auf Peer-to-Peer Prinzipien beruht. Der Name
des Systems ist PeerSON. In dieser Arbeit wird das Design und die Implementierung
einer Peer-to-Peer Infrastruktur für soziale Netzwerke vorgestellt, die ohne zentra-
le Server arbeitet. Diese Arbeit bezieht sich vor allem auf die Topologie und die
Protokolle für den Informationsaustausch.

Contents

1 Introduction 9

1.1 Motivation . 9

1.2 Sealing the privacy leak of social networks 10

1.3 Structure of this thesis . 11

1.4 Terminology . 11

2 Background information and design choices 13

2.1 Features of Web based OSNs . 13

2.1.1 Joining from everywhere . 13

2.1.2 Leaving messages . 13

2.1.3 Uploading myself – my own profile 14

2.1.4 Finding friends . 14

2.2 Differences to other P2P applications 14

2.3 Storage . 16

2.4 Bootstrapping . 16

2.5 Topology . 17

2.5.1 Unstructured topologies . 18

2.5.2 Structured topologies . 18

3 Design and implementation of a P2P protocol for social networks 22

3.1 Globally unique IDs – GUID . 22

3.2 DHT of super-peers as lookup service 23

3.2.1 Smart super-peers – OSN-DHT 23

3.2.2 Using OpenDHT as lookup service 24

3.3 Further methods to connect to neighbours 25

3.4 One GUID – many machines . 26

3.5 Announcing content – file management 26

3.6 Interaction between peers to retrieve a file 27

3.7 Log in/log out . 29

3.7.1 Handling user sessions . 29

3.7.2 The protocol . 29

3.7.3 Format of key value pairs . 30

3.7.4 Problems when leaving suddenly 30

3.8 Synchronous messages: chat . 31

3.9 Searching new friends . 32

3.10 Asynchronous messages: Wall, mail 32

3.10.1 Why asynchronous messages are the hardest problem 32

3.10.2 Possibilities to solve that problem 33

3.10.3 What we implemented . 33

8

3.10.4 Format of the messages . 34

4 Evaluation 35
4.1 The experiment setup . 35
4.2 What to measure to know if the ideas work 36

4.2.1 Latency . 36
4.2.2 Get the right answers from the system 36

4.3 How to simulate real users . 36
4.3.1 The social graph . 37
4.3.2 Online times and actions . 39
4.3.3 How many super-peers are needed? 39

5 Related work 40
5.1 E-post . 40
5.2 Jabber . 40
5.3 Publish-subscribe systems . 40
5.4 Master thesis about the encryption system 41
5.5 Hierarchical DHTs . 41
5.6 DHTs as lookup service . 42

6 Conclusions and outlook 43
6.1 Summary . 43
6.2 Future work . 43

Acknowledgement 44

Bibliography 45

9

1 Introduction

Online social networks (OSN) – this term describes a part of the so called “Content
Based Web“, sometimes also called Web 2.0. Why Web 2.0? The innovation is that
in contrast to the traditional web, where a web site is filled with content by the
owner of the web site, all or most of the content is contributed by the users, the
clients. The success of a web 2.0 page is highly dependent on the community of
contributing users. If many contribute the content may be sufficiently broad and
reach a certain quality.
Along with this new principle the possibility of communication between users by
means of a web service is used by more and more people. This has resulted in plat-
forms such as Facebook [FB], Orkut [OK], or the German version StudiVZ [SVZ].
Their content is mainly information about the users themselves and the abilities
to find and to talk to other users. Such platforms are referred to as online social
networks.
Today Facebook has millions of users and many more features than just uploading
the profile of a user and finding others to write them messages. One of the features
Facebook provides includes a mini-feed, a list of small entries, where users can put
what they are doing right now. Another one is the feature called Wall, one for each
user, which offers a quite to guest books on private home pages. Furthermore, ev-
eryone can upload arbitrary data-files, music, videos, or the photos, e.g., of the last
party.

1.1 Motivation

This implies that users of social networks are releasing a lot of personal data to the
social networks. These, namely the servers belonging to Facebook, Orkut, or Stu-
diVZ, have control over this data. As a consequence of using a social network, the
users have to live with artifacts such as getting personalized advertisements filling
their mailboxes, having their data sold to third party companies, etc. Other com-
panies are using the data for studies with more severe consequences. For example
human resources companies have detected social networks as a good source to com-
pile a personality profile. Health insurances may study, e.g., the photos from many
parties, that a user posted, and may conclude, that a person with those drinking
habits is too high a risk for the insurance company. In addition, there have already
been some awkward incidents, e.g., the story about the Facebook Beacon. With the
Facebook beacon it is possible to track a user’s buying behavior, e.g., on Amazon,
and place a note about that in the user’s mini-feed. This enables friends to see what
the user bought. This includes the person, in particular, that was meant to receive
the present as a Christmas gift, see [BEACON]. Therefore it is understandable that

10

some users stop using such platforms. They may want their data back under their
control. Many others, though, are continuing to use social networks, because this
way of social life is becoming a substitute for mailing lists, open discussion, and
announces web sites, and even sometimes for real-life communication. But they are
getting worried about their privacy. For example, if a student resists to register
at StudiVZ, she may not get some relevant information about homeworks, learn-
ing meetings, and other events not officially organized by the university. Nowadays
many of these events are only communicated via such platforms.
Even worse there is now a discussion going on, if the data a user posts on, e.g.,
Facebook remains the property of the user or if it belongs to Facebook. This is, for
example, relevant regarding the question, if a user is allowed to take out his own
social graph from one OSN and can transfer it to another OSN.
In conclusion, we note that current social networks have a privacy leak.

1.2 Sealing the privacy leak of social networks

Our proposal for tackling the privacy leak is to give the user back the control over his
data by decentralizing the system and using certain encryption mechanisms to make
the data accessible only to authorized people. We do so by replacing the server in
an online social network with a distributed system of a peer-to-peer network. This
immediately implies that there is no single point of access to the data anymore.
Furthermore, we encrypt each data item and the user can choose whom to grant the
right to access each data item. This ensures that even if someone were to collect all
the data from the system it would not help him.
The challenge is to develop an infrastructure that gives us the possibility to keep
as many of the features of existing OSNs, such as Facebook, while eliminating all
privacy problems. With our approach we address the following problems: First of
all we keep the ownership of the data with the user. By encrypting the data, the
user has to make a decision for every data item to whom he wants to give it. This
way a user’s wife will only know about her Christmas gift if he enables her to know.
The only issue we cannot resolve with this approach is the one of trust between
people. We cannot assure with technical means that a person who has got a key and
decrypted, e.g., a photo, does not send it to others, for example after an argument
with the person on the photo.
To keep all the features a web-based OSN has, is more challenging. With our
proposed P2P application we are able to keep features such the Wall (guest book
functionality), and to share files with one’s friends. As a first step, we chose to
implement our system as a pure P2P system, which forced us to implement an
application that has to be run on a user’s computer. That means we forgo to use,
e.g. Ajax, to send the code on the demand through a web browser, since, for now,
we do not want to assume every client is a web server. Unfortunately this implies,
we cannot keep the feature of pure web platform, which enables a user to enter the
system from everywhere, including Internet Cafes.
We also do not yet implement keyword search. This feature can be added on top of
the P2P system, but is beyond the scope of this thesis.

11

This thesis focuses on the underlying peer-to-peer infrastructure. It does not cover
the encryption part, which is the topic of the thesis by Youssef Afify [ENC]. The
P2P system includes building a topology in terms of who is connected to whom,
deciding where meta information is stored, and where, how much, and how often
the user data is stored to achieve redundancy.

1.3 Structure of this thesis

In Chapter 2 we introduce necessary background for building a P2P infrastructure
for a social network. Because of the complexity of the topic, we use this chapter as
well to explain details on some of our design decisions.
In Chapter 3 we describe in detail how our protocols work and how our implemen-
tation works.
Chapter 4 is about the test setup and data sets we need to evaluate our system.
Chapter 6 summarizes this work and gives an overview about the possibilities to
continue this work.

1.4 Terminology

The following terms and abbreviations are used throughout the reminder of this
document.

DHT Distributed Hash Table. A system in which every node is a hash entry, that
stores values mapped on this value.

P2P Abbreviation for peer-to-peer.

P2P system A P2P system is the underlying architecture that defines how peers
communicate with each other

Peer A peer in our system is the process run by the user, that can talk to a DHT
and to other peers. When talking to the DHT the relation is equal to a client
server relation, as peers send requests to the DHT. Nevertheless, we will always
talk about peers.

Location A user can run a peer on different machines. To distinguish the machines
we use the term location. The string identifying a location is the locator.

PeerID The peerID is the combination of peer and locator to uniquely identify a
user at a specific location

Super-peer Super-peers are special peers that form a distributed lookup service.

GUID Globally Unique ID (GUID) is an ID that uniquely identifies a peer.

hGUID We store a GUID as a MD5 hash, hGUID is the hashed GUID.

OSN Online social network.

12

SN Social network.

User The term user in this thesis is used to refer to the person hat runs our appli-
cation or uses a web service.

13

2 Background information and design choices

In this chapter we discuss first how certain Web OSN features work and how they
can be transferred into a P2P environment. Then we use a set of typical P2P
applications as an example to show why our system is unique and why we cannot
completely reuse existing systems. Furthermore, we discuss the background and our
related design decisions on possible topologies, the boostrapping problem in P2P
systems, and finally the topic of storage.

2.1 Features of Web based OSNs

In this section we discuss the typical features server based OSNs support, using
Facebook as an example.

2.1.1 Joining from everywhere

Facebook is a Web service. As such it can be used anytime and at any place as long
as the user has a browser and an Internet connection available. The user can log in
from everywhere, including Internet cafes. It is OK, if the user forgets to log out,
goes somewhere else, and logs in again. The server-based systems have full control
over the user’s sessions and can handle this behavior. In addition it is OK, if a user
closes the browser without logging out.
In our approach we do not have such a server. So we must find a different solution
using the support offered by different P2P systems. More details on this can be
found in Chapter 3.2
One thing that cannot be changed is the need for a separate application for the OSN.
This application can be realized as a browser plugin or as an independent applica-
tion to be installed on a user’s machine. Both will in most cases not be installed
on arbitrary computers, e.g., in an Internet cafe. Unless our system becomes very
popular, it will not be possible to log in from everywhere.
Nevertheless it is quite feasible to build it in a way that it can be run from every-
where, once the source code can be reached.

2.1.2 Leaving messages

In Facebook users can leave messages for other users or write to their Wall (the
guest book equivalent in Facebook). This works at any time, even if the recipient
is offline at the time the message is sent. Each message is stored on the web server
and is visible to the recipient as soon as he goes online. For the rest of this work we
refer to such messages as asynchronous messages in contrast to instant messaging,
for which both communication partners have to be online.
For centralized services, the asynchronous way of messaging is very easy to handle

14

as the server has, as said, full control and the capacity to store the messages. For a
decentralized system, this task is a harder one. In Chapter 3 we see how to tackle
these tasks.

2.1.3 Uploading myself – my own profile

One of the key features of Facebook is the possibility of creating and editing a profile.
They enable each user to publish any information about himself that he’s willing
to share. In addition, a user can upload all kinds of media files, like music, videos,
and photos, to document himself and his life online. When a user is not online, this
information is still available to others, because all data items are stored on the OSN
server.
This for a centralized service very simple task is another challenge for the decentral-
ized approach. In Chapter 2.3 we give a detailed description on how to solve this
issue and its side effects within a distributed system.

2.1.4 Finding friends

The typical Facebook “career“ starts with an invitation mail by a friend, classmate,
fellow student, or colleague. But how does one find more friends, e.g., former class-
mates? Facebook offers a search functionality that, for example, allows to issue a
query with the name of the school and then returns a list of all Facebook users that
have entered this school in their profile. A user can in a similar way find people
from his work environment, his university, or even people who are in his address list
of a web mail service, such as Yahoo!. This is a special topic for any P2P-system.
More on that will be given in Chapter 3.

2.2 Differences to other P2P applications

Many P2P systems and applications hav been built for different purposes. As such
it is natural to ask, why it is necessary to design yet another P2P system for OSNs.
In this section we review the features supported by different P2P systems.

• Searching files
This is equivalent to searching for content in the system; something that many
P2P systems provide, including collaboration and file sharing systems, except
maybe Internet telephony and instant messaging. File sharing, distributed
cooperation systems, P2P backup systems, all need the feature to search for
a specific file. This kind of search does not mean the search for, e.g., old
classmates or people by some form of losse specification, rather the search is
for a filename by exact-match-search.

• Access rights – access groups
We need to provide the ability to set different access rights for each file. More-
over we need the capability to define groups of peers that can execute these
access rights. Traditional file sharing does not need that. Backup systems on

15

Feature supported
by PeerSON

File sharing P2P backup
systems

Collaboration
platforms

Searching files yes yes yes yes

Managing differ-
ent access rights
for file

yes no no yes

Searching specific
peers for commu-
nication

yes no no yes

Continuously
changing groups
for access rights

yes no no no

Sending/receiving
messages

yes no no yes

Changing files yes no no yes

Table 2.1: Overview about key features and their support in existing P2P systems

a P2P basis are usually meant to manage the user’s own files, so these systems
have only one access privilege. Nobody but the file owner is able to decrypt
the data. Collaboration systems need to handle different access rights and
they also allow to change the group membership for access permissions, but in
collaboration systems it is usually a fixed set of persons that changes not very
often. The purpose of collaboration systems is different to social networks and
so the underlying structure is different.
Part of our project is that it should be possible to change the access rights on
files. In the scope of this thesis we do not work on this part as we work mainly
on the infrastructure concerning topology and underlying protocols.

• Changing files
That files – keeping the same file name – change their content over time is
special to social networks. Collaboration platforms do that as well, but they
do not need to maintain changes over the whole network, but only within a
specific group.

• Sending/receiving messages
Such functionality is only provided in some collaboration platforms. This
feature is not needed for P2P file sharing or P2P backup systems.

Table 2.1 gives an overview about the above explained features and how well they
are supported by typical P2P systems.

In summary, our system is very different from the traditional P2P systems that
handle files. It comes very close to collaboration platforms. But it still differs.
Collaboration platforms are built to have a common space for a relatively small and
fixed group and are not meant to have a continuously changing set of users accessing
different files.

16

2.3 Storage

This section is about how to handle the actual data of the users. By “data“ we mean
the actual content that a user uploads to Facebook, such as pictures, personal data,
etc. In Facebook all the data is on the servers of the company that owns Facebook,
namely Microsoft. The data is always available and when storage becomes short,
they can just add some new hard discs. In our system we want to be as close to
“always available“ as possible, so we need to think about where, what, and how
many copies to store.
The first and easiest way to do it, is to do nothing. A user has his own data and his
friends have this data as well after a while. So the data of someone is only spread
among those people who are at least interested in his content and allowed to read
it. Depending on how many friends a user has, there will be as many copies and
the data will be more available. But in times when the user and all his friends are
offline, there is no possibility to find the data anymore.
A first idea, to increase the availability of a file, is that everyone participating in the
system provides a small amount of his disc space and each file is certain number of
times copied to peers who are not friends.

This leads to more questions, that are beyond this thesis.
How many copies do we need that a file is always available?
How should the peers be chosen, to send a copy to? For this we may also need data
about how often and how long a peer is online in average. We also should take time
zones into account. If all copies are in the same timezone there might be a time of
day when even the most reliable peers are offline.
Do we need each part of a user’s profile to be always available? Are there parts,
which are rarely asked? What can be deleted, when the system runs out of space?
How to deal with users who waste too much space by uploading all their videos and
music?

In addition to everyone contributing some part of his disc space, we also have the
following idea. Since most DSL connections usually come with a small home router,
which have now often also some disc space – some with flash storage, others with
the possibility to mount an USB stick, or even with a normal notebook hard disc
– we can use them to store copies on. The advantage is that these machines are
often always online and change the IP address – at least in Germany – only every
24 hours. The disadvantage is, that for this approach additional work by the users
must be put to install the necessary applications on their home router to make that
work. But many other projects work with collaboration and input by a community.
So it might be worth a try.

2.4 Bootstrapping

To get started, every P2P system needs a way for a peer to contact the system
for its first connection. This problem is called the bootstrapping problem. For
this problem, there exist several approaches, e.g., using a well-known web site to
get a set of IP addresses of peers which are known to be stable and “always“ on.

17

Another approach is to use caching. The IP addresses of neighbours in the P2P
network are stored and the next time a peer wants to connect he first tries the IP
addresses he was connected to the last time. Sometimes a list of IP addresses is
“hard coded“ in the application and is down loaded together with the source code
or binary. Often a combination of these approaches is used, e.g., in later version of
Gnutella implementations.

All these mechanisms have some weaknesses. Reusing an IP address can be prob-
lematic. First of all, most DSL providers at least in Germany have a 24-hour reset.
Therefore the IP address which was used the last time is likely to have changed since
the last connection. In the worst case, all the IP addresses in the cache have changed
or a peer has to connect to a neighbour on the other side of the globe because it
is the only one reachable anymore. The caching approach also has a bootstrapping
problem. Where should the initial connection go to when the cache is naturally
empty?
A website to get a list of IP addresses violates the idea of P2P networks. Ideally a
P2P system is completely free of any central component. If the website is the only
source to get IP addresses of potential neighbours and is taken down, no new peers
can connect anymore. Furthermore, such a website has to be continuously updated.
A similar problem is faced by using IP addresses that come with the application,
such a list should be updated very frequently or contain very stable peers.

For our prototype we rely on OpenDHT, see Chapter 3. OpenDHT uses a web
site on which all active nodes are listed. This provides the advantage that we have
always a set of online nodes for testing our prototype.

Our idea for this issue is to have a decentralized P2P lookup service similar to
the Domain Name Service (DNS). As underlying structure we suggest to use a DHT
in which every node is reachable via a web-like URL, so that the IP addresses
can be resolved via a DNS query. How do the peers know the URL, especially
many URLs, each lookup node would have its own? For this question, we think of
a principle that is similar to Jabber. Jabber allows everyone to set up a Jabber
server to support the Jabber network. The URL of such a server is always in the
form anyserver.jabber.somedomain. We could establish a network of bootstrapping
servers which are connected to each other. The URL of each server is then, e.g.,
myserver.bootstrapping.de, so every URL contains a fixed part like bootstrapping.
The knowledge URLs would then spread like the URLs of jabber servers do. This
approach does not only work for P2P OSNs, it could be one big systems for all P2P
networks and applications.

2.5 Topology

In general, there exist two basic possibilities how to organize a P2P system: in a
structured like Chord and in an unstructured way like Gnutella. In this section we
take a look at some of the differences and explain our design choices.

18

2.5.1 Unstructured topologies

One example of an unstructured P2P system is Gnutella. Unstructured systems
result in a random neighbour graph as it has no rules on how to choose a neighbour
to connect to. There is also no general rule how to manage data. Searching for files
is usually done by flooding queries and, because of that, sometimes quite slow.
Unstructured P2P-systems have proven to fit the needs of e.g. file sharing or video
streaming systems quite well. A social network has different demands from those.
In such a system, we naturally have a few copies of each file, namely at the owner’s
machine and at his friends’ machines, at least as long as we do not introduce extra
copies into the system. Additionally and specific to our case, files are changing over
time. We have to be able to handle different versions of the same file. Indeed there
may be many versions, e.g., the mini feed of Facebook is updated by some users very
frequently. It may change every few minutes. In this case, it would mean to flood
all the information necessary to maintain the wall feature, which would swamp the
system and lead to errors.
Because of this, we very soon came to the conclusion, that for this special purpose
an unstructured P2P system does not meet our demands.

2.5.2 Structured topologies

A structured P2P system, e.g., one with an underlying DHT, is in contrast to the
unstructured solution a topology, in which every node gets its own ID. Based on this
ID the node is then responsible for a certain set of data bound to that ID. When
searching data a query is formulated and then forwarded to the node with the ID
that is nearest in relation to the data. This way of directing a query can make
structured topologies much more efficient.
As mentioned before, it is rather clear to see that a good solution would be to use
a DHT or any other kind of structured layout. But using such a structured system
introduces new effects we have to take care of. The traditional DHT system puts a
lot of responsibility and managing overhead on each P2P node. Yet as devices like
mobile phones and pocket PCs become more and more popular, we have to take the
limited resources of such machines into account. So not every device in our network
should be forced to incur the overhead imposed by the use of a DHT.
One solution to that is a system of super-peers doing the DHT jobs. The other users
can then connect to that DHT-system built by super-peers, sending requests and
messages. More details on this design can be found in chapter 3.
That means that we logically divide our system into a control and a data plane,
where the control plane is organized as DHT that is seen by the data plane as a
kind of transparent service which allows to send requests and updates to without
knowing the structure. The second part, the data plane, are the users who have
the data and are seen by the DHT as clients. The super-peers that build the DHT
behave depending on the rules of the DHT in terms of joining, leaving, connecting
to each other, managing the data.
With such a system, we can additionally say that only reliable (always on, fixed IP,
maybe even with a Web address) machines are allowed to get the super-peer status.

19

This system – each user decides for himself whether to be a super-peer – also avoids
problems, that came up in the Gnutella [GNU] super-peer system. Gnutella gave
peers the super-peer status automatically, which had the effect, that a user going
online from a broadband link became a super-peer without knowing about it, which
can lead to problems in terms of performance or when using the uplink of, e.g., a
university.

Since the first DHT systems, e.g., Chord [CHORD][CHO], were proposed, a lot
of different DHT systems have been developed. Therefore we can now choose from
a set of different system with different advantages and disadvantages.
The basic functionalities of most DHT systems are quite similar. They provide put
and get methods to store and find data. The differences are in how they manage
the data, how well they can handle churn, and how efficient they are in finding data,
inserting and deleting data, and so on.
As seen, there is not yet an application or system that has the features we want, so
we finally have to design our own protocol along with building the topology. But
before we choose a DHT system, we have to answer another question of a design
principle for our system. We can decide to design a system with smart super-peers,
doing all necessary management of meta-data or build a system, in which the peers
have to manage most of the work themselves.

Such an intelligent DHT needs some extra abilities apart from storing key value
pairs. It needs to be able to differentiate semantically between key value pairs and
react to them, e.g. when a user uses a second machine to enter the system, but is
already noted as online on the first machine, the DHT needs to exchange all related
key value pairs, giving the first machine the state inactive and setting the user online
for his second machine.
Keeping user state is only one example, another one is that such a DHT node would
need to be able to know if a new connection is a non-super-peer, a normal peer, or
a new DHT node joining the DHT with all implicated steps to integrate the new
DHT node.
This can be done by extending a DHT or designing a new one.

The second possibility is to put more intelligence into the peer application and
find a method that enables peers to find out by themselves the state of other users,
versions of files, and so on. The disadvantage is, that we can only use the base
abilities of the DHT, namely put, get, and for some DHTs remove. This increases
the complexity of the peer protocol and its implementation. One of our goals was to
enable also thin clients like mobile phones to participate in our system, so the peer
application has to be as simple as possible. The advantage, that we do not need to
design or extend a DHT and especially do not have to deploy yet another DHT.
Which of these possibilities to choose depends also on the available systems.

• Chord
Chord was one of the first DHTs and has evolved since its first implementa-
tion. The project itself is still there, but nowhere deployed.
The Chord project website [CHORDCOM] has the following comment about
the code: “At this point no official release for Chord is available. You may
access our latest source in two ways: you can download an automatically gen-

20

erated snapshot of our working code, or you can browse or download the source
code using the Mercurial distributed version control system. The anonymous
CVS and CVSweb interface is no longer recommended or updated, but is still
available.

This version is experimental, under active development, and may frequently
be broken. The Chord HOWTO describes in more detail how to download
and compile the software. The code base is licensed under an MIT/X11-style
license.“

The advantage of Chord is that it is simple and easy to understand. But un-
fortunately this genius simple system has some weaknesses. Chord is static,
a node computes its node-key before entering the system and is responsible
for data near to its node-key. The result is that there is no easy functionality
for load balancing. Furthermore, the original version of Chord also had no
redundancy. Every time a node leaves without adhering to the leave-protocol,
it removes data from the system.

• Hierarchical DHTs
There exists a set of hierarchical approaches for DHTs which come close to
what we need. Usually the main difference to our system is, that the hierar-
chical approach is used to enable better load balancing, to reduce the amount
of messages in the whole system, and similar ideas. But it seems that there
are no implementations of such a DHT publicly available. So if we decide to
build our own, these hierarchical approaches can be an inspiration to avoid
reinventing everything from scratch.

• Igor - A Keybased Routing System
Igor [IGOR] is an active project and the people working on it have a strong
interest in cooperation to see their system in productive use. The only, but
big disadvantage of Igor is that it is only a routing system. Any further
DHT functionality – load balancing, managing data or keys, etc – must be
implemented by us. As such, we would need to develop our own DHT system
or reimplement an existing one.

• P-Grid
P-Grid [PGRID][PGR] is a special variant of a DHT, it has a “trie“ structure
without hierarchy. The data is stored in the leafs of a binary tree. Moreover,
the data can be searched by a prefix, e.g., a file name starts with A, the branch
responsible for A is searched.
An important feature of P-Grid is that it allows range queries. P-Grid has
also an implementation but it is not deployed. So using P-Grid, we would at
least need to deploy their code and eventually extend it to fit to our idea of a
smart DHT. The reason we did not choose to use P-Grid, was that the code
was, at the time we had to come to a decision, not ready for usage. We would
have had to debug it first, which would have needed some time.

21

• OpenDHT/Bamboo
OpenDHT [ODHT][OHASH] is a project that deployed the Bamboo [BBO][BAMB]
DHT system on PlanetLab, already running to test our ideas on it. The idea
behind that project is to provide a system that is always online and to provide
a simple interface. The whole project is for research purposes and is meant to
be the basis for client applications being implemented on top of the system.
This project has some strong advantages. First of all, we can use the deploy-
ment of OpenDHT and just have to write a client, the peer application that
talks to the DHT-nodes. The problem with that is we cannot change the im-
plementation that is deployed on PlanetLab. Therefore this only works for the
variant that puts all intelligence into the peers.
Additionally, we can do the necessary changes on Bamboo, deploy it in a test
environment and do tests with that system. The Bamboo code is in Java, but
a peer application could be written in any language. In contrast to other im-
plemented DHT systems, OpenDHT provides an additional remove method,
so key value pairs cannot only be put and searched in the system but also
removed if necessary.

• Pastry
Pastry [PASTRY][PAST] was also one of the early projects working on the
idea of a DHT for P2P systems. Because of that, the theory behind Pastry is
strong and the model has evolved through the years.
Pastry exists as a open source Java implementation, which one can change
to put the intelligence into the DHT or just deploy it and build our protocol
around it.
The advantage on Pastry is, there is a huge tutorial on how to use and write
code for it. And there is also a set of scripts to get it running on PlanetLab.
Unfortunately the scripts are quite old and need some adjustments.

There are many systems, which come close to providing what we need. For the
scope of the thesis, we decided to use the system that was usable without changes
and already deployed, OpenDHT. We use OpenDHT to realize the version of a non-
smart DHT of super-peers. For more details on the design and implementation see
Chapter 3.

22

3 Design and implementation of a P2P protocol

for social networks

As we decided to implement the version with non-smart super-peers, we need to
design a protocol for the peers that offers all key features of an OSN. For the protocol
we designed, we need at least three methods, put, get and remove to make the system
work. We do that using OpenDHT – that is the only deployed system, that provides
all three methods – as a network of super-peers that provides a lookup service. We
implemented an application for the non-super-peers that works using OpenDHT.
This chapter describes how our protocols work and what we implemented so far.
First, we explain how globally unique IDs are chosen and managed. Then, we
explain our lookup service built by a set of super-peers, first the version of smart
super-peers as a concept, then the version with non-smart super-peers, which we
also implemented. The rest of this chapter explains the details on all protocol parts
and additionally how features, e.g., instant messaging, work from the point of view
of the protocol logic.
Figure 3.1 shows the view on our system for an example use case.

3.1 Globally unique IDs – GUID

A globally unique ID is equal to a user name. We do not have a central instance
where a user can sign in with a user name, that ensures that this ID is not yet in
use. There exist approaches for finding unique names in a distributed way, which
we did not implement. Rather we decided to use e-mail addresses, at least for the
prototype. Our reason is, that today almost everyone has an e-mail address that is
naturally unique. Moreover services like Facebook and StudiVZ assume that every
user has an e-mail account, where they can send at least the confirmation mail to to
finish the registration process. The only problem with e-mail addresses is that they
have a certain value e.g. for spammers. If we put them into a DHT, the owner of
the DHT node can extract the list with all the addresses on this node. Since we use
OpenDHT, which is under a centralized control of a researcher, this is not as bad
as having a DHT in which anyone can become a node, but it remains an issue. But
this is only the case for the prototype.
The solution we use in our prototype is that we use MD5 hashes to “encrypt“ the
e-mail addresses. Hash collisions can happen there, but are sufficient rare. So each
GUID is the MD5 hash of an e-mail address.

23

OpenDHT Peer A/home

Peer A/palm

locationlocation

location

send msg

active?get A’s location

store msg

message to A

NO

YES

Peer B/home

Figure 3.1: Example: abstract view of the whole system in the case a peer B wants
to send a message to peer A.

3.2 DHT of super-peers as lookup service

As said before, we think about a system, where a DHT built of super-peers plays
the role of a distributed lookup service. We decided to use OpenDHT, because it
is already implemented and deployed on PlanetLab, which reduces the amount of
work to be done for prototype testing. This decision implies that we cannot choose
to put the intelligence into the DHT as we cannot change how OpenDHT works.
Nevertheless we want first to explain, how an intelligent DHT would work and then
explain what OpenDHT does in detail. So the next section describes how we would
build a special DHT for the needs of an OSN, an OSN-DHT.

3.2.1 Smart super-peers – OSN-DHT

In a system with simple peers, the DHT, and with that the super-peers, have to
manage a lot of data and maintain it. For now we assume a traditional DHT that
brings its own node-ID to data mapping, load balancing, and so on, which we can
extend to fit our needs. In the following section we describe the needs of an OSN-
DHT and our ideas to solve them.

What does an OSN-DHT need to offer, to make it work? This depends on what
users do in such a system.
First of all, peers ask for other peers, their state, IP address, port, and other infor-
mation. To provide that, the DHT has to maintain a list of all GUIDs of its peers.
If a GUID is seen for the first time, the DHT adds it to the list. GUIDs stay there,
even when the user is offline. In this case, an entry is added to the list with the
offline state and the IP address is deleted from the list. It is still open what happens
when a peer does not follow the logout procedure, but just kills the peer process.
In that case, the DHT would give a wrong address to another peer about that user,

24

then the peer would try to connect to his other peer and fail. Usually a peer will
try more than once to establish a connection before he gives up, noticing that the
address is wrong. In that moment the peer knows more than the DHT. Maybe we
can use that fact and introduce a functionality that a peer reports his knowledge
back to the DHT.

Second, peers will ask for files, who has which version of a file. So the DHT also
has to maintain a list of mappings of files and versions to GUIDs. We have a list in
mind that has as search entry the combination of file name and version, sorted by
latest version. Every entry in that list has as second column all GUIDs that have
this version of the file. Nevertheless, the peers have to do some work and send a
message to the DHT each time they have a new file or a new version of a file.

In summary, the nodes of an OSN-DHT have to store a set of lists and maintain
them. They need to react to the messages they get from non-super-peers, which
means they need to be able to react to the semantic content of a message, e.g.,
understand when a user sends the logout message and react by changing the user’s
state on the referring list.

To realize a system like this, we at least need to extend the code of an existing
DHT system.

3.2.2 Using OpenDHT as lookup service

The following section describes how we use OpenDHT as a lookup service and how
we realize on top of it a system with the version of a non-smart DHT.
OpenDHT provides similar functionalities as most other DHT systems, it mainly
works with key value pairs, that can be stored in OpenDHT, searched and down-
loaded, and – this is quite special – deleted. Apart from that, OpenDHT has some
limitations and special properties.
OpenDHT is a centrally maintained system of up to 200 nodes that can be accessed
and used by everyone. Each key must be a byte array of maximum 20 bytes. For us,
a key is either a GUID or file name, so the 20 bytes would be a problem, but as all
keys are hashed it is enough. Values in OpenDHT are limited to 1024 bytes, which
led to some problems during the development, e.g. see Chapter 3.10. But this limi-
tations also show that OpenDHT either was meant to be used as lookup service or
only for research purposes where it is usually not necessary to store bigger amounts
of data with one key. Because of that, it is not possible to store, for example, a
video file in the DHT. It is also possible to add a secret to every put message, a
string that serves as a password. If a secret is set, a value can only be deleted when
the remove request contains the same secret. A special feature in OpenDHT is that
keys can be used twice as long as the value is different. That means that a key-value
pair can put twice to OpenDHT without overwriting the old one if the values are
different. We will explain in Chapter 3.7, when explaining the log in procedure, how
we make use of this.
Furthermore, OpenDHT works with timeouts. Each key-value pair has a time-to-

live value, that can be at maximum set to a week. That implies two things. Any
key-value pair disappears from thhe DHT when the time-to-live is over. For us, this
means a peer that is offline for more than a week disappears from the DHT. That

25

means he is not found anymore instead of giving the answer that the peer is offline.
It also implies that, to do a refresh, we send messages for all files a peer has to the
DHT at every single login. With this design a GUID that is offline for a week can
no longer be found. But the files of a peer can still be found if other peers have
copies of his files.
Another effect is that when deleting a key-value pair, the time-to-live of this pair
has to be greater than the time-to-live of the actual key-value pair. But that also
means, that the same key-value pair cannot be put into the OpendDHT until the
delete times out. Because of that we had to introduce timestamps in our system as
well, see Chapter 3.7 for details. For bootstrapping, OpenDHT uses the fact that it
is a “centralized“ system. A list of all active DHT nodes is stored on a web site and
continuously updated.

3.3 Further methods to connect to neighbours

It is clear how the super-peers connect to each other. They just execute the Bamboo
protocol. The peers open a connection to one super-peer and use it as server, similar
to a web server. But how do the peers connect to each other?
A peer is not a super-peer, although a user – the person in front of a machine – can
run both, a peer and a super-peer at the same time, but the peer and super-peer
will always be logically divided. So this section is about how peers connect to each
other.
Traditionally, P2P works over the Internet. A peer connects over its provider’s
uplink to the P2P system. We suggest to include also other links. We reserve fields
in our protocol to inform not only about IP address and port of a peer, but also to
give other peers information about alternative methods to connect. For example,
if a peer A is participating in a wireless mesh project like Berlin Freifunk [BFF],
he can put this information together with his other information into the value that
belongs to his GUID key. If another peer B wants to connect to A, he asks the DHT
for the connection information of A and receives together with IP address and port
also the ID and name of A within the mesh and can then connect directly via the
mesh instead of going the whole way through the Internet. Alternatively, a user can
choose the geographically nearest peer by comparing the peer’s GPS data with his
own.
Additionally, we plan to include some features of delay tolerant networks, e.g., two
peers with mobile phones meeting, e.g., at the university not having an Internet
connection at that moment can exchange their profile via Bluetooth. In the moment
the DHT does not know about the new location of some files. The synchronisation
is done the next time the peers have Internet connectivity.
There are as many possibilities for alternative connections, as methods for data
transfer between two pieces of hardware exist.

Our prototype – protocol and implementation – contains only the fields for wireless
meshes and GPS data. At this point, it does not yet do anything with the data, but
it can be easily extended. The idea is to keep this part interactive, so that a user
can decide each time if he wants to use the Internet or any other connection.

26

3.4 One GUID – many machines

Today, a person usually has more than one PC. There is a PC at home, one at work,
a handheld, a mobile phone, etc. But if a user has a set of video files, it might be
a problem to store them on his mobile phone because of space limitations. So, if
the system tells peer A that B has the desired file this does not necessarily suffice,
e.g., B has the searched file on his PC but is at the moment online with his mobile
phone.
To get around this problem we introduce an extended GUID, a peer is not only
defined by his GUID but by a combination of GUID and a location. This is similar
to the way the Jabber protocol does it. The key stored in OpenDHT is still the
hashed GUID, but the value contains a field that is called location, so that B’s PC
can be distinguished from his mobile phone. Further details on this value is given
in the section about the login procedure 3.7.

3.5 Announcing content – file management

As denoted before, we need the ability to tell the DHT what files a peer has stored.
This section describes the protocol and how we implemented it.
To keep the choice of which file gets which access rights most flexible, we use a single
file, e.g. city, name, etc. for every part of the personal data. The following protocol
is about the communication between peers and super-peers, how the peers store the
information, which files they have within OpenDHT.
Our keys are equivalent to the file name, and the file name is constructed using the
hGUID and the type of the file:

key ::= 〈filename〉
filename ::= 〈hGUID〉@〈type〉

type ::= in|list|fl|fn|ne|bd|ci|wi|we〈index〉
index ::= INTEGER

hGUID ::= md5(〈GUID〉)
As OpenDHT supports multiple values per key, we will possibly receive a list of

values. These values contain the information, which of the peers store which version
of the file. Hence the user can then choose a peer to download the actual content of
the file directly.

value ::= 〈peerID〉#〈version〉
peerID ::= 〈hGUID〉#〈locator〉
A peerID consists of the hGUID of the user, that runs the peer, and the loca-

tor. For the logical architecture of the system it is both valid, GUID and hGUID.
Together with the locator it always denotes uniquely a peerID. The difference is,
that OpenDHT knows for its keys only hGUIDs, where as in the human readable
context, the GUID in clear text is more important.

Except for wall index, wall files, list, and index, the abbreviations, such as ne

for name are not needed by the actual application. These abbreviations are only
important for the user to formulate the right search string, when searching for a
certain file, because the keys need an exact match to get a result by OpenDHT. So
these abbreviations are a question of standardization.

27

Type Description

in Index file. This file contains a list of all files which belong to a user’s
profile

list List file. This file contains a list of all files stored at the location of a
peer, including profile files of other users.

fl List of friends of a peer.

fn The file containing the first name of a user.

ne The file containing the last name of a user.

bd The file containing the date of birth of a user.

ci The file containing the city, in which a user currently lives.

wi Another index file, the wall index. This file contains a list of all wall
entries a user has.

we〈index〉 This file contains one wall entry. The number of the wall entry is suc-
cessive and defined on the receiver’s side. So if peer A sends peer B a
wall entry for the first time, but B already has ten other wall entries,
A’s message gets the number 11 not 1.

Table 3.1: Implemented filetypes of reference implementation

We defined only a small set of file types for the prototype, the list can easily be
extended. See Table 3.1 for a list of which file types we have already defined.

3.6 Interaction between peers to retrieve a file

After a peer has all necessary information about a file, she initiates a connection
to the peerID she wants to get the file from. The following protocol is about, how
peers (not super-peers) communicate with each other.
The get request:
get request ::= get#〈filename〉#〈version〉

When a peer receives a get request it answers:
get reply ::= getreply#〈code〉#〈filename〉#〈version〉\n[〈filecontent〉]

code ::= 200|404|405

The codes are leant on HTTP reply codes to make it more easy to keep them in
mind, see Table 3.2.

Figure 3.2 shows an example for the procedure to get a file. Peer A wants to get
the file B@in, the index file of peer B, so it asks the DHT and gets the answer that
B has the file in version 2 at location home and work, and peer C has the file in
version 1 at location home. 2 is the highest version, so A wants to get the file from
B and asks the DHT for the login value of B to find out that B is currently online
at location home. Online means that the user behind the GUID B is currently not
at his PC, but for receiving a file that does not matter. A sends the get request to
B and first receives the get reply followed by the actual content. The example does
not show all options that are sent.

28

Code Description

200 OK. File will be sent

404 File not found. In that case, only the code, the requested filename and
version number is replied.

405 Different version. This means, the requested file exists, but has a dif-
ferent version than the requested one. In this case the newest version
available is sent.

Table 3.2: Reply codes for get replies

B # w o r k # 2

B # h o m e # 2

C # h o m e # 1

get(B@in)

get(B)

loc:home#IP:2.2.3.5..

loc:work#IP:16.17.5.6..

ge t#B@in#2

ge t rep ly#200#B@in#2
<content o f f i le>

OpenDHT Peer A/work Peer B/home

Figure 3.2: Example: peer A wants to get the file B@in. (Pseudo code)

29

3.7 Log in/log out

In this section we explain how user sessions are handled and how the log in and log
out procedures work and are implemented.

3.7.1 Handling user sessions

Questions, that have to be answered, include:
What should be done if a peer stays online at his home PC, goes out without logoff
and wants to connect from somewhere else?
How does PeerSON know at which location the peer is right now, e.g., for private
messages?
These two questions are partly addressed by the already mentioned location field.
That field helps first to distinguish different machines of a user. But when a peer
wants to communicate directly, how will it know to which location to connect? And
also, a user leaving PC 1 and moving over to PC 2 makes the user unavailable on PC
1 but not the files there, if the machine is still online and the application running.
To solve these situations we introduced the following procedure.
A peer can have three states, active, online, and offline. Each time a user starts the
application on a machine, all values related to one GUID are changed, so that each
peer can always find out to where he can connect to.

3.7.2 The protocol

Before the actual login, the application sends a request to OpenDHT to get all
values related to the GUID that is to be logged in. If one of those values contains
the state active, the state for this values is changed to online. After that the value
for the current location is built containing the state active. When the user changes
machines again, the whole procedure has to start again.
When all values have the right state, the application sends each key-value pair for
all locations to OpenDHT, and the old values are removed.
Because of the time-to-live property of OpenDHT key-value pairs, we added to each
value related to GUIDs a time stamp to keep also same values different. When later
searched for a GUID at a certain location, always the biggest number in the time
stamp-field is used. Usually using time stamps can lead to problems, as machines
need to be kept in sync. But we do not rely on exact time stamps, we use this only
to avoid the time-to-live problem when removing and putting again the same value.
When we need to compare the time-stamps, we just sort by the size of a number
originating from the same PC, and one machine should usually stay in synch with
itself.
This can only cause problems if the clock of one machine wraps backwards. But
that is implicitly taken care of by removing outdated values in the login procedure.

This procedure generates a lot of messages, and also redundant messages, as the
values with state offline are also sent again. This does not matter since we need to
refresh the DHT entries from time to time anyway. An example of a complete login
procedure is given in Figure 3.3.

30

get(A)

remove(loc:home#..#state:act ive)

loc:home#. .#state:act ive

loc:mobi le#. .#state:of f l ine

OpenDHTPeer A/palm

put(loc:palm#..#state:act ive)

put(loc:home#..#state:of f l ine)

Figure 3.3: Example for the login procedure of a peer with GUID A on location palm

The example is without the options of OpenDHT such as time-to-live value for put
operations.

3.7.3 Format of key value pairs

This part of the protocol is again between the peers and OpenDHT. The syntax for
the login procedure is as follows:

key(〈GUID〉) ::= 〈hGUID〉
value(〈GUID〉) ::= locator:〈locator〉#IP:〈IP〉#port:〈port〉#State:〈state〉-

#meshID:[〈meshID〉]#GPS:[〈GPS〉]#〈timestamp〉
locator ::= STRING

IP ::= 〈IP address〉
port ::= 〈port〉

state ::= active|online|offline
meshID ::= STRING

GPS ::= STRING
timestamp ::= INT

3.7.4 Problems when leaving suddenly

At the moment, we do not implement any solution for peers leaving without following
the logout protocol, e.g., just killing the process or unplugging a cable. But we
provide two possible solutions. The actual issue when leaving without the logout
is, that the DHT gets out of sync; it cannot deliver the right information anymore.

31

Code Description

locator A string defined by the user, e.g., home or laptop, to tell on which
machine the user is currently active.

IP The IP address of the machine the user is currently active on.

port The port on which incoming connections are accepted.

state A peerID can be in one of three states. Only one peerID can be active
at a time.

meshID Optional. If a user is participating in a city mesh project, e.g., Berlin
Freifunk, he can announce how he reachable within the mesh.

GPS Optional. In this field, a user can put his GPS coordinates to support
coordinate based P2P neighbour selection.

timestamp Time in seconds since 01.01.1970. This field is used to work around the
problems with time-to-live fields in OpenDHT and to find out which
value is the newest if there is more than one possibility.

Table 3.3: Fields of the login value

We propose two solutions to get rid of wrong information in the DHT as soon as
possible:
The first variant is that a peer that notices that he got wrong information, sends
the right key-value pair to the DHT in order to set the state to offline. The problem
with that solution is that it would be a security issue. As said, OpenDHT allows
to add to every put request a secret that is necessary to delete the value. This is
special in OpenDHT and it does not avoid that someone puts a slightly different
value for another peer, e.g. just a newer time stamp that would make all older
values obsolete. As mentioned before, in this work we do not take care of security
implementations and assume that all peers are well behaved, but allowing everyone
to change the state or other connection data of other peers is nevertheless a serious
issue.
The second method we have in mind, is to set the time-to-live of a peer’s contact
key-value pair to a very short time, e.g. five minutes and then do a refresh short
before the value times out. This would keep the system consistent in range of five
minutes, but would destroy the possibility to see that a peer exists, but is offline at
the moment. In that case, a peer would only find another peer if the other peer is
at least online.

3.8 Synchronous messages: chat

Chat or instant messaging is a popular feature not only in platforms like Facebook,
but also in web forums, and other web sites like web radio. Some provide their own
within the service, others link to instant messaging services or IRC channels.
Instant messaging or chat is only possible if both partners of a communication are
online at the same time. So this is in terms of protocols one of the most easy tasks,
peer A asks the DHT if peer B is online, if so peer A starts a conversation with

32

B. We did not implement a chat or instant functionality for the prototype, because
it cannot easily be tested with an automated simulation and it is an easy task to
extend the implementation with that functionality, but would enlarge the code to
handle without providing a use for the testing phase.

3.9 Searching new friends

One of the strengths of services like Facebook or StudiVZ is, that they have a search
functionality to find old class mates, people from the same university, or with similar
interests. Such a feature is difficult to handle in a system that has the goal to save
the privacy of its users. To search for another person by a key word, e.g. get a list
of all people studying the same subject at the same university, assumes that all the
persons appearing on the list agree to make their GUID, university and their study
field public. In our prototype, we allow only exact matches, so people need to be
friends before searching each other in our system, at least they need to know each
other’s GUID.

A protocol that provides a search functionality but respects everyone’s privacy
preferences would look as follows.
We already have a fine-grained file structure with one single file per profile field, e.g.
name, birthday, or city of birth. Our users can set the access rights for each of those
files differently, they can also decide to make parts of their profile public. Using
that, we can introduce a third kind of key-value pair, that contains as keys keyword
categories like name, city of birth, and so on. The value then is, respectively, the
name of the file that contains the information. As each filename is in the form of
〈GUID@〉〈file abbreviation〉 there will be for each peer a different value for a key, so
that also same names do not lead to a collision as long as there is no hash collision.

3.10 Asynchronous messages: Wall, mail

As seen in Section 3.8, instant messaging in the context of P2P is quite a simple
problem, as all communication works only if both partners of a conversation are
online at the same time, which is a synchronous communication. In Facebook,
StudiVZ, and other social network platforms, it is a feature to be able to leave
messages for other users that are offline at that moment, a kind of e-mails. Facebook
provides a message-leaving system that is similar to a guest book and is there called
wall. These kind of messages work all asynchronous. We use the term wall as a
reference for all kinds of asynchronous messages.

In this section, we discuss why the wall is, from the protocol point of view, the
hardest problem in a P2P system – along with the bootstrapping problem – , give
some possibilities on how to solve and explain what we implemented and why.

3.10.1 Why asynchronous messages are the hardest problem

We use file sharing as an example to explain why it is such a difficult problem to
provide the possibility of asynchronous messages in a P2P system. In a file sharing

33

system, when a peer asks the network for a file, he gets as answer all the other peers
that have that file, but only the peers that are online right now. The network does
not know anything about peers that also have the file but are offline, so a peer can
always only communicate with other online peers.

In the case of asynchronous messages, a peer wants to leave at least the message
in the system that he wants to send a message for some other peer that is currently
offline. In the worst case, both peers are never online at the same time, he even
wants to leave the message itself somewhere, that the other peer can pick it up.
Hence we need to add a memory – not storage – to our P2P system.

3.10.2 Possibilities to solve that problem

There are some possibilities for dealing with that issue, depending on what the
underlying infrastructure is.
First, we could make other peers responsible for that. If a user is offline at the
moment there is a message for him, a set of other peers is checked if one of them is
online. Every peer found being online that has been made responsible for keeping
messages for this certain user then keeps the message. This set of peers is called
delegates. When the addressed peer comes online again, it asks each of its delegates
if there are new messages. The disadvantage is that we do not know how many
delegates we need to make sure that, first, at least one of them is always online to
take over a message and second, there is also always at least one of them online
to deliver the message. To make that system more reliable, the delegates should
possibly exchange all messages they get for their peer. To realize this protocol, we
need some data about the behavior of the peer, to find out how many delegates we
need and which peers are good candidates for being delegates.

The second possibility is to divide the work between delegates and the DHT. If a
message shall be sent, the sender notifies the DHT, that means he sends a key-value
pair with a certain key that can be asked for and identified by the receiver when he
comes online again. The value tells what the name of the message file is and which
peers have the file. The improvement here is that the peer at least knows that there
is a message and can try to catch the peers storing the messages.

The third possibility addresses the case that we build our own smart DHT. Then
we can introduce an additional functionality that the DHT collects all arriving asyn-
chronous messages. The smart DHT will also notice when the receiver of the mes-
sages comes online again and can then deliver all messages. In that case we only
would have to deal with the size of messages and limited storage on super-peers.
But for the peers it would feel like a regular mail server.

3.10.3 What we implemented

The questions that is left is how many super-peers we will need to make the lookup
service scalable. To get an idea about that, we will need to get more experience with
the whole system and it is not relevant for the description how such a system should
work in theory. Working with OpenDHT means we do not have a smart DHT that
we can change. So we implemented a slightly different version of the third possibility

34

get(B)

put(B@no, wal lentry#A#Hello.. .

loc:home#..#state:of f l ine

get(B@no)

OpenDHTPeer A/work Peer B/home

loc:work#. .#state:of f l ine

login

wal lentry#A#Hel lo. . .

Figure 3.4: Example: A wants to send a wall message to B while B has no active
location

mentioned. When peer A wants to send peer B a wall entry, but B is offline, it sends
a certain key-value pair to OpenDHT. OpenDHT does not know anything about the
state of B, it just stores key value pairs. So when B does the login procedure it also
queries for a specific key that is used to store all the messages arrived since his last
login and after that B removes these values to avoid getting messages twice.

Because of the limitations in OpenDHT for the size of values, we have to limit
all asynchronous messages to pure text with fewer than 800 letters. To keep the
prototype more simple we limit all wall entries to 800 letters.

3.10.4 Format of the messages

To notify about asynchronous messages, we use the following key value syntax, to
send the information from the peers to OpenDHT.

key(〈notification〉) ::= 〈hGUID(receiver)〉@no
value(〈notification〉) ::= wallentry#〈GUID(sender)〉#〈wall entry content〉
Figure 3.4 shows an example for the operation to send a wall message. In that

example B is online at one location, but sending data to a peer is only allowed when
the user is there to notice that data is sent to his computer. Because of that, A
cannot directly send the message and will leave it in the DHT. The next time B
finishes the login procedure he will ask at last the DHT for notifications and will
receive A’s message from the DHT. This example is again without the OpenDHT
options.

35

4 Evaluation

This chapter describes the setup, parameters, and values, which are necessary to
prove that our system works properly and is scalable.
We distribute our application on PlanetLab to do the experiments there. Beside an
additional question on the lookup DHT, we discuss three major questions, first what
we need to measure to know if our system works and scales, second how to simulate
real users, and third how to simulate their behavior.

4.1 The experiment setup

PlanetLab is an open research platform. It is a set of currently 932 nodes distributed
over the world and connected to each other. It is possible to allocate resources
on these nodes in the form of virtual machines to implement, install, and run any
experiment. Because of the virtualisation, it is not a problem that OpenDHT as well
is deployed on PlanetLab. The only influence will be that if we let our experiment run
on a node that also runs OpenDHT, we may get faster answers to requests. But the
time-consuming part in the communication with OpenDHT is not the connection
to an OpenDHT node, but as in any DHT the search process of data among all
DHT nodes. As such it is very unlikely to see an actual improvement in the speed
of answers.

The idea is to create a social network from a small graph, see chapter 4.3, and
for each node of the graph a standardized profile, a set of user files including the
application. Then we generate for each node an event log, a text file that contains all
the events a user can do, like log in, find the newest files of a friend, and so on. The
generation of these events is at the moment randomized on the basis of an uniform
distribution, as we still do not have appropriate knowledge about the user behavior
in social networks. We plan to determine the right distributions by studying trace
data of social networks in future work. To execute the events we have a parser for
the event logs that is the same for all users. This strategy produces a lot of small
event logs that can be kept locally for later reproduction of each experiment.

The whole experiment has several steps. The first one is an experiment with
ten nodes in a complete graph – everyone knows everyone – running locally on one
machine to get a first insight. After that the ten node graph tested on ten manually
chosen PlanetLab nodes. Then we do a first setup with a small social graph. All
nodes are distributed on PlanetLab and simulate a small network of users of our
system.

To approach reality, we decided to test some extreme cases in addition to exper-
iments with real data. First, we use a setup in which all peers are always online
and exchange data in a randomized way. The other extreme is a setup in which the
online/offline state of users is also randomized. Both scenarios are far from reality,

36

but give an insight for best case and worst case behavior of the system. This allows
us to later put the results with real or estimated behavior data in relation to these
two extremes.

Unfortunately, OpenDHT has been very unreliable for a few months, so it was
not possible to execute our test setup until now.

4.2 What to measure to know if the ideas work

To know if our system works, we first need to know what to measure and what
to compare the results with. This section discusses which values can be gathered
and what that tells us about our protocol and its implementation. In general we
use Facebook as a reference, especially on everything related to time, e.g., the time
until the profile of a peer is available compared to the time it takes on the Facebook
website to open a user’s profile.

4.2.1 Latency

Another indication for how good our system is, is the time it takes to find files,
peers, and so on, compared to the time it takes to, e.g., open a profile of a friend in
Facebook. For example, we measure how long it takes to search a file and finally get
it. This time contains two components. First, the answer time of the used DHT,
which is also depending on the load on the DHT and the general search speed of
the DHT. Second, the time the implementation needs to process each answer. The
expectation is that our system will be slower than Facebook. But the question is if
the difference is small enough that it is still usable.

4.2.2 Get the right answers from the system

Getting the right answers means that other peers and the location of files can be
found. To find a peer is to get the right value from the DHT, to find a file is to
get the right information about peers having the file, their location, and the version
that exists at that location. Furthermore, it means that if a wall entry shall be sent,
it is sent directly to the peer if the peer is active and sent to the DHT in case there
is no active peer. These things concerning the actual functionality are already done
manually. We started three instances of the program on the same machine and tried
out by hand if it works and right results are given output, e.g., if a file exists after
requesting a get operation. These tests were done several times while OpenDHT
was still operable.

4.3 How to simulate real users

We work with a real system, not a simulation, but we do not have real users by now,
so we need to simulate the users and their behavior. This section describes how this
can be done and what we have already achieved.

37

4.3.1 The social graph

To simulate users, we first need the users and their friends. That can be described
by an undirected graph. The nodes are the users, each edge corresponds to the
friendship relation between two users.

There exist several theoretical approaches to generate so called social graphs, one
of them for example is the small world graph algorithm developed by Jon Klein-
berg [KLEINBERG]. But no matter how good the theory is, such an artificial graph
is just not a real social graph as Facebook or other platforms produce naturally.

The problem is to get access to this data. The data is owned by the company
that owns the platform. This data has a high economical value and the companies
protect it. That even led to discussions about wether the user who put his data in
the platform still owns the data and is allowed to extract it again. There are several
applications to extract ones own data from Facebook or other social networks to
transfer it to another platform. Most platforms have now a clause in the user contract
that forbids to use such applications. A case that became public was [SCOB].

StudiVZ is the German equivalent to Facebook, has similar features, and even
looks similar. It is a platform for students and very successful.
In 2006, Hagen Fritsch, a student from TU Munich started a project with the goal to
prove that the platform has some privacy issues and wrote a program that is called
a web crawler. He was able to extract a huge part – 1.074.574 profiles – of all user
data from StudiVZ, namely all profile data, that the users gave the status public
to and also some not-public user profiles. In StudiVZ, public means that everyone
who is a member of StudiVZ can access the data. Hagen Fritsch published the
analysis results of the data [FRITSCH], there can also the exact number of crawled
profiles can be found. This data is anonymized available for research, so we got a
graph with around 450,000 nodes. Each node is encoded with an integer, so that we
cannot derive any personal data from it. We analyzed this graph and found that the
number of friends per user seems to be heavy tailed, see Figure 4.1(a). The graph we
got is directed and because of that the friendschip relations are asymetric – node A
having an edge to node B does not mean, that B also has an edge to A. In StudiVZ
the friendship relation is always symmetric, either two users are friends or not but
having a friend which a user is not the friend of is not possible. Because of that, we
changed the graph and made it undirected in the way that we added a node A to
the friend list of another node B if B was on the friend list of A. In the view from
a graph theortic way we made of each directed edge an undirected. Figure 4.1(b)
shows that this does not change the properties of the graph that are important for
us, the average number of friends stays stable compared to the original graph. From
here on we are only working with the symmetric version of the graph.

Our interest is to find out how many friends users have and how strongly the
graph is connected. How many nodes can be deleted before the graph becomes
unconnected?
We found an answer to this when we tried to fit the graph to our test setup. Of
course 450,000 nodes are not manageable in a test setup, so we tried to reduce the
number of nodes to fewer than 500 but keep the diameter as big as possible, at least
more than five. The result is that it is not possible. Finally, we chose a subset of

38

-8

-6

-4

-2

 0

 2

 4

 6

 0 1 2 3 4 5 6 7 8

cc
df

 lo
g

number of friends (log)

number of friends per user

(a) CCDF of the friendship graph of the StudiVZ data

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 1 2 3 4 5 6 7 8

cc
df

 lo
g

number of friends (log)

number of friends per user (symmetric graph)

(b) CCDF of the friendship graph of the StudiVZ data – made
symmetric

 4.6035

 4.6036

 4.6037

 4.6038

 4.6039

 4.604

 4.6041

 4.6042

 0 1 2 3 4 5 6 7 8

cc
df

 lo
g

number of friends (log)

number of friends per user (symmetric, 734 nodes)

(c) CCDF of the reduced symmetric friendship graph

39

one node with degree three and followed its friends to a recursion depth of two, that
means including the three friend nodes and their friends and so on. This leads to
a diameter of only four, but with this one start node the resulting graph had more
than 700 nodes. Setting the recursion depth to three to get a diameter of six already
results in almost the whole original graph.

How real is the small graph derived from the StudiVZ graph?
The original data is itself only a subset of the real graph, as the crawler did not get all
the data and the graph is from 2006 and it is very likely that the data has changed
a lot since then. Furthermore, we can produce the same plot, see Figure 4.1(c)
of the small graph as we produced for the full graph. It seems to be similar to
the symmetric and also to the original asymmetric graph, see Figure 4.1(b) and
Figure 4.1(a) but 734 nodes are not enough to be able to give a complete answer.
The small graph is, compared to the full graph, not significant in size.

Though it is not clear how good our test graph really is, it is a good enough start
for experiment setups.

4.3.2 Online times and actions

Having a graph that can be used to simulate the users is very helpful. But to find
out if the system is scalable and well behaved, the users must do something with
the system. So we need to simulate not only the users but also their behavior. After
searching through papers that analyze values like session length and churn we found
that most of them analyze Bittorrent networks or Flickr or something else. But
we did not find any paper on the session length and churn in Facbook or StudiVZ.
Many of the papers we found give some numbers, but do not focus on the exact data
we need.

Fortunately, we have access to an anonymized data set containing information
about behavior of real users in Facebook. As this data has been collected at a PoP
of a large ISP it spans over a significant customer population to allow representative
statements. These insights are in the progress of publication and will be available
later on. For further information on this, we refer the reader to [FSCH]. We will be
able to extract from this data the parameters for our test setup, e.g., how long users
stay online, what is the churn in OSNs, how often users are asking for the profiles
of their friends, etc.

4.3.3 How many super-peers are needed?

An additional question that comes up is, how do we ensure we have enough super-
peers? And how many are enough?
We cannot ensure that. We assume, that every user can decide to be a super-peer or
not. So, if just not enough users become super-peers (in relation to normal users) the
system might crash because of too few super-peers handling too many user requests.
To find out how many super-peers we need in relation to users, we need to get more
experience with the system.

40

5 Related work

There are many systems and platforms that provide similar or features related to
our work. In this chapter we briefly introduce them and explain how they differ
from our approach.

5.1 E-post

E-Post is a P2P infrastructure for e-mail. It has some similarities with our approach,
but a different purpose. E-Post is based on Pastry, and the principle is that every
participant of the system provides some storage to be a part of a distributed mail
server. The messages are stored within the DHT until they are delivered.

There are some differences to our system. First, E-Post works without super-
peers, so every peer needs to provide all features. Second, E-Post is in some way
only a part of what we do, it is so to say the wall, as peers cannot create profiles
and search other peers’ profiles. But that is not the goal of E-Post. E-Post is still
a very active project and it is also productive, so best way to get more information
about this is to have a look on their website [EPOST][EP].

5.2 Jabber

Jabber is a server based instant messaging system, using the XMPP protocol. Jabber
gave us some inspiration for our system, although it has not much in common with
our work as it is a centralized instant messaging system The idea to support different
locations per user comes from that protocol, as in Jabber this is also supported. The
difference is, that the XMPP protocol works with priorities on the locations, that
the user has to set manually for each peer instance. That means that if a user forgets
to change the priorities on one location and then leaves for another, messages for
the user may be delivered to the old location. Because of that the message may be
received too late, e.g., the message that there is a party in one hour. This is the
reason we try a different approach building our protocol with locations.
For further information see [XMPP]

5.3 Publish-subscribe systems

To notify others about news, there exist publish-subscribe systems, e.g., a user
subscribes to a group and then gets automatically a message every time there is
news in this group, similar to news feeds for websites.

At a first glance, those systems look like the right approach for our asynchronous
message notification. But there is a big difference in the logical structure. Publish-
subscribe systems work with a one-to-many-relation, many users get messages from

41

Figure 5.1: a) one peer receives messages from many other peers. b) many clients
subscribe to a source of messages, e.g., news

one source, which they subscribe themselves to, see Figure 5.1 b), whereas we need
a many-to-one-relation. Each peer can get messages from many other peers, an
example for one peer getting wall entries from other peers is given in Figure 5.1 a).
So if we try to use a publish-subscribe system, a peer would have to subscribe to
all other peers to be able to receive messages from them and each peer would be a
subscribe source that has to be managed and maintained in the system. Speaking
in the example of a news group, each peer is then a news group and each peer would
need to subscribe at least to all peers from whom he accepts wall entries from.

A publish-subscribe system will become interesting for us, when we add groups to
our system. Groups in, e.g., StudiVZ can be opened by all users and other users can
become members of a group. These groups work in a way similar to a web forum.

5.4 Master thesis about the encryption system

As mentioned before in this work we do not handle any encryption or security issues.
A protocol to that was designed by Youssef Afify [ENC], who especially addresses
the problem of access control.

5.5 Hierarchical DHTs

There exist different approaches for hierarchically organized P2P systems. First
of all, Gnutella has been working since years with a super-peer concept, but it is
still an unstructured P2P system. Hierarchical systems including DHTs, such as
Chordella [HDHT] are in many cases designed to improve load balancing of DHTs.
They do not intend to divide the whole system into two independent parts and
use the super peers as lookup service. We could choose to use Chordella instead of
OpenDHT but we still would need to extend it using with non-super-peers as clients.

42

5.6 DHTs as lookup service

A DHT is traditionally always a lookup system, as it is an architecture built with
the goal to efficiently find data and content within a P2P network. In contrast, we
use the DHT as a super-peer system, to store and look up meta-data, but store the
content outside of the DHT. There are some approaches to use DHTs as lookup
services, e.g., to improve routing in the Internet, such as scaling down the size of
routing tables. For example there are projects at TU Berlin which will be published
within the next months, for more information refer to Anja Feldmann [AF] and Luigi
Iannone [LI]. These systems usually design very specific DHTs to fit their needs,
similar to how we design a specific OSN-DHT for our approach. So we cannot use
the systems that were designed in other projects as they will very probably not be
able to use our infrastructure. Basic DHT implementations are often meant to be the
underlying system. To give them a certain functionality, there must be implemented
an application on top of it. In the cases where a common, unchanged DHT is used
to implement the desired functionality on top of it, there is still the difference in the
application.

43

6 Conclusions and outlook

In this Chapter we summarize what we did within this thesis and give a brief outlook
on how the work can be continued.

6.1 Summary

In this work we developed a P2P infrastructure for an online social network, based
on two concepts, a DHT built by super-peers and the peers that use the DHT as a
lookup service.

We gave an introduction to the background of our work and especially for the
design descisions we had to make. Based on that, we designed a detailed protocol
on top of the Bamboo DHT, more specifically for the deployment of it, OpenDHT,
and gave an overview over other possibilities to design a P2P system for social
networks.

We implemented an application that provides the key features of an online social
network and that uses OpenDHT as a lookup service. This includes a protocol to
leave messages for other peers in the DHT, and one to announce a peer’s connection
data and which content a peer has stored.

We analyzed a subset of the social graph of StudiVZ to derive the simulation of
users from it for evaluating our system and described our test setup in which we
want to evaluate the system.

6.2 Future work

In this thesis we implemented a first prototype to realize our project. This project
consists of many parts, which goes beyond the scope of this thesis. First of all we need
to complete the setup for the evaluation of our system. The scripts are prepared,
but we still do not have enough knowledge about user behavior to simulate this
behavior realistically.

Since OpenDHT seems to be gone, we need to deploy our own Bamboo testbed.
Before that, we plan to use a single process to simulate the existence of OpenDHT
on a single PC. Furthermore, the application needs to be extended by a graphical
user interface to make its usage more comfortable. When the first evaluation phase
shows a good behavior and we are sure that we can stick with our protocol, the
application needs to be extended by more features, e.g., a chat functionality.

Depending on the results of the evaluation, it is even possible to bring this project
to the real world and offer a privacy saving alternative for Facebook, Orkut, StudiVZ,
etc.

44

Acknowledgements

First of all others, thanks to Sonja Buchegger, as she had the idea to create a P2P
OSN project and gave me the chance to participate in that. She and Anja Feldmann,
my two advisors, gave me a great support during the last months, with hints, ques-
tions, asking the right questions, coming up with helpful ideas, linking to the right
people, making coffee, some pressure at the right time, and a lot of other things.
Further thanks and greetings to the other members of this project in Singapur and
Switzerland, Anwitamann Datta and Le Hung Vu, for their hints and questions,
especially during the development phase. Also thanks to Thomas Fuhrmann for his
insights and explanations.
Thanks to Bernhard Ager who had the idea to hash GUIDs to avoid problems with
OpenDHT, which also brought yet some privacy in our system.
Another one is Fabian Schneider who gives me access to important data and, more-
over, is always a source of energy as he always brings back the smiling, even when
the whole world tries to prevent one from finishing a thesis.
Special thanks go to Harald Schiöberg. He helped me to domesticate Latex, hunt-
ing bugs, and getting along with dia. But, much more than that, he was there to
support me all the time, reading the first ugly drafts of this thesis, asking mean
questions, solacing me, when the thesis seemed to be never ending work, and above
all he was just there.
It is not possible to list all the names, as the group around Anja Feldmann grew very
fast the last year. But thanks go to the whole INET group. It is a great pleasure to
work with such smart, helpful, and friendly people.

45

Bibliography

[PSON] Sonja Buchegger, Anwitaman Datta: A Case for P2P Infrastructure for
Social Networks - Opportunities & Challenges. In: The Sixth International
Conference on Wireless On-demand Network Systems and Services.; WONS
2009, February 2-4, 2009, Snowbird, Utah, USA.

[IGOR] Bernhard Amann, Benedikt Elser, Yaser Houri, Thomas Fuhrmann: Ig-
orFs: A Distributed P2P File System. In: Proceedings of the Eigth IEEE
International Conference on Peer-to-Peer Computing; P2P 08, September 8-11,
2008 Aachen, Germany.

[ENC] Youssef Afify: Access Control in a Peer-to-peer social network. Master thesis;
EPFL, August 15, 2008, Lausanne, Switzerland.

[HDHT] Quirin Hofstätter, Stefan Zöls, Maximilian Michel, Zoran Despotovic,
Wolfgang Kellerer: Chordella - A Hierarchical Peer-to-Peer Overlay Implemen-
tation for Heterogeneous, Mobile Environments. In: Proceedings of the 2008
Eighth International Conference on Peer-to-Peer Computing - Volume 00, pages
75-76 ; IEEE Computer Society, 2008, Washington, DC, USA.

[AF] www.net.t-labs.tu-berlin.de/~anja.

[LI] http://www.net.t-labs.tu-berlin.de/~luigi/.

[PASTRY] http://freepastry.org/

[PAST] A. Rowstron, P. Druschel: “Pastry: Scalable, decentralized object location
and routing for large-scale peer-to-peer systems“ In: IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), pages 329-350;
November 2001, Heidelberg, Germany.

[FSCH] www.net.t-labs.tu-berlin.de/~fabian.

[ODHT] http://www.opendht.org/.

[OHASH] Brad Karp, Sylvia Ratnasamy, Sean Rhea, and Scott Shenker: Spurring
Adoption of DHTs with OpenHash, a Public DHT Service. In: Proceedings
of the 3rd International Workshop on Peer-to-Peer Systems, Springer-Verlag
Lecture Notes in Computer Science Hot Topics Series; IPTPS 2004, February
2004, San Diego, CA, USA.

[BBO] http://www.bamboo-dht.org/.

[BAMB] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz: Han-
dling Churn in a DHT. In: Proceedings of the USENIX Annual Technical Con-
ference; June 2004.

46

[BEACON] http://www.efluxmedia.com/news_Facebook_Dragged_into_

Class_Action_Lawsuit_over_Beacon_22293.html.

[EPOST] http://www.epostmail.org/.

[EP] Alan Mislove, Ansley Post, Charles Reis, Paul Willmann, Peter Druschel, Dan
S. Wallach, Xavier Bonnaire, Pierre Sens, Jean-Michel Busca, Luciana Arantes-
Bezerra: POST: A Secure, Resilient, Cooperative Messaging System. In: Pro-
ceedings of the 9th Workshop on Hot Topics in Operating Systems; HotOS’03,
May 2003, Lihue, HI.

[XMPP] http://xmpp.org/.

[FB] http://www.facebook.com/.

[OK] http://www.orkut.com/About.aspx.

[SVZ] http://www.studivz.net/.

[GNU] http://rakjar.de/gnufu/index.php/GnuFU_en.

[CHORD] http://pdos.csail.mit.edu/chord/.

[CHO] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan: Chord: A Scalable Peer-to-peer Lookup Service for Internet Ap-
plications, pages. 149-160; ACM SIGCOMM 2001, August 2001, San Deigo,
CA, USA.

[CHORDCOM] http://pdos.csail.mit.edu/chord/\#downloads.

[PGRID] http://www.p-grid.org/.

[PGR] Karl Aberer, Philippe Cudr-Mauroux, Anwitaman Datta, Zoran Despotovic,
Manfred Hauswirth, Magdalena Punceva, Roman Schmidt: P-Grid: A Self-
organizing Structured P2P System; SIGMOD Record, September 2003.

[BFF] http://berlin.freifunk.net/.

[KLEINBERG] Jon Kleinberg: The small-world phenomenon: An algorithmic per-
spective. Proc. 32nd ACM Symposium on Theory of Computing, 2000. Also
appears as Cornell Computer Science Technical Report 99-1776 (October 1999).

[SCOB] http://scobleizer.com/2008/01/03/ive-been-kicked-off-of-facebook/.

[FRITSCH] http://studivz.irgendwo.org/.

47

