
User Search with Knowledge Thresholds in
Decentralized Online Social Networks

Benjamin Greschbach, Gunnar Kreitz, and Sonja Buchegger

KTH Royal Institute of Technology
School of Computer Science and Communication

Stockholm, Sweden
{bgre, gkreitz, buc}@csc.kth.se

Abstract. User search is one fundamental functionality of an Online
Social Network (OSN). When building privacy-preserving Decentralized
Online Social Networks (DOSNs), the challenge of protecting user data
and making users findable at the same time has to be met. We propose
a user-defined knowledge threshold (”find me if you know enough about
me”) to balance the two requirements. We present and discuss protocols
for this purpose that do not make use of any centralized component.
An evaluation using real world data suggests that there is a promising
compromise with good user performance and high adversary costs.

Keywords: Decentralized Online Social Networks, Privacy, User Search

1 Introduction

Popular Online Social Networks (OSNs) are logically centralized systems. The
massive information aggregation at the central provider inherently threatens
user-privacy. Data leakages, whether intentional (e. g., selling of user data to
third parties) or unintentional (e. g., by attacks from outsiders), happen regu-
larly1. Motivated by these insights, decentralization has been proposed to mit-
igate these threats. When decentralizing a system, two challenges have to be
met: to implement equal functionality without centralized components, and to
provide user privacy under a significantly different threat model.

Here, we look at the functionality of user search, i. e., the lookup of a system-
specific user identifier (e. g., a URI of a profile) based on information about the
user (e. g., name, city, affiliation). The ability to search for users, in conjunction
with other ways of traversing the social graph (e. g., friendlist of friends), is a
basic building block of an OSN that allows users to find each other and thereby
establish links.

1 To name only two examples: Twitter leaking data from 250K users in February 2013
(http://blog.twitter.com/2013/02/keeping-our-users-secure.html), Facebook selling
user data (http://www.telegraph.co.uk/technology/facebook/8917836/Facebook-
faces-EU-curbs-on-selling-users-interests-to-advertisers.html).

1.1 Our Contribution

We propose and evaluate protocols to support user search in a decentralized OSN
that shield user data from searchers who know less than a user-specified threshold
amount of information about the target. To our knowledge, this consideration
is a novel form of knowledge-based access control. This type of restriction was
inspired by an observation by Fong et al. [6] that being able to reach a user in
an OSN is an integral part of access control in such systems.

We evaluate our protocols using real world data from the U.S. census to relate
the performance for legitimate users to the costs of an adversary that tries to
guess unknown information.

1.2 Related Work

To the best of our knowledge the privacy-findability tradeoff has not been inves-
tigated in this context. The closest example is user search in Skype. However,
as far as we know, their protocol has not been described in detail, but only via
external measurement studies, such as one by Baset and Schulzrinne [2].

Most user search functionalities, including ours, search for users within the
global user database of the OSN, independently of who searches. In contrast, we
note that recently, Facebook has debuted Graph search [4], which ties searching
to the social graph, and where the goal is not only to find users, but also content.
Several other approaches of personalized searching for content in an OSN have
also be discussed, e. g., by Bai et al. [1] in a decentralized setting.

Although designed specifically to search for users in a DOSN, some challenges
are shared with constructing a general purpose search in a peer-to-peer (P2P)
setting. This has been studied by e. g., Li et al. [7], and Bender et al. [3]. There
is also a commercial search engine using P2P, Faroo [5]. Two differences are
our focus on access control and privacy, and the significantly smaller amount
of information to be indexed in our setting. Similar to these proposals, we also
build upon a Distributed Hash Table (DHT) as a core component to realize our
functionality.

2 Decentralized User Search Protocol

We design a search protocol for a decentralized system, so we cannot assume
any trusted third party or central search provider to be available. Instead, we
use a DHT to register and look up search terms, as it is a common component
of Decentralized Online Social Networks (DOSNs). As the DHT runs on nodes
participating in the system, we must also protect the privacy of the participants
against these nodes.

We propose two protocols, both designed to index and retrieve information
in a DHT in a protected way. Our protocols provide two operations. A register
operation, where users enter information that allows others to find them based
on certain attributes, and a search operation that, given a set of search terms,

Fig. 1. System overview: The search protocols are one component of the DOSN and
makes use of a DHT.

returns the set of matching user identifiers. In a next step, out of the scope of the
search protocols described here, these user identifiers can be used to view public
profiles, and to send a message or friend request to the sought user. Figure 1
illustrates the search functionality.

2.1 Protocol Specification

We consider a searcher, who wants to find a searchee. The searchee registers
searchable information about herself in the DHT by choosing a number n of
attribute labels li (e. g., lastname, firstname, city) and assigning each one value
vi. This label-value pair (denoted as attribute ai) is mapped to a user identifier
uid of the searchee. Upon registration the searchee specifies a threshold number t
of attributes which the searcher must know in order to obtain the user identifier.

2.2 Storing Values in the DHT

The DHT holds a mapping from user attributes to user identifiers, but this
mapping must be protected, also against the nodes in the DHT. To this end, we
propose a protocol that alters how values are added and retrieved from the DHT.
The required property is to retain standard DHT functionality, while nodes in
the DHT do not learn plaintexts of keys or values.

When storing a key-value pair the key is fed into a Key Derivation Function
(KDF) together with a global salt gSalt, yielding the DHT-key for the put and
get operations of the DHT. The value is encrypted using a secret that is derived
from a random salt salt and the key (the attribute information, in our case).
The salt is stored together with the ciphertext on the right hand side of the
mapping. In short, the mapping of a key-value pair in the DHT looks like this:

KDF(gSalt,key) 7→ salt||encryptKDF(salt,key)(value)

The gSalt has to be publicly available for all users to allow the lookup of
any attributes. This invalidates the purpose of a salt, as pre-computing tables
to reverse the left hand side becomes possible again. Nevertheless, we suggest to
keep the gSalt as it at least requires the pre-computation attack to be targeted

to each specific instance of our system and out-of-the-shelf pre-computed tables
for the used KDF cannot be employed.

The salt is an individual random number different for every entry. Note that
it in particular has to be different from gSalt as otherwise any DHT node could
decrypt the value of items it stores, using the left hand side (without knowing
the key).

2.3 Scheme 1: Storing all Allowed Attribute Combinations

We want a searcher to prove knowledge of a threshold number of attributes before
obtaining the user identifier. One direct approach to achieve this is to map the
user identifier only from attribute concatenations of the threshold length. If the
searchee registered e. g., seven attributes and specified that at least four of them
are necessary to find her uid, we would store the following

(
7
4

)
= 35 combinations:

a1||a2||a3||a4 7→ uid
a1||a2||a3||a5 7→ uid
...
a4||a5||a6||a7 7→ uid

where ai = (ui, vi), ui attribute labels and vi attribute values. We assume there
is a global order of attribute labels, and attributes are inserted sorted by label.

Algorithm 1 Registration (Scheme 1)

1: l1, . . . , ln ← User.input(“Choose searchable attribute labels (e. g., name,city,...)”)
2: v1, . . . , vn ← User.input(“Enter values (your name, your city,...)”)
3: ai ← li||vi // for i = 1 . . . n
4: t← User.input(“Enter threshold number of attributes necessary to find you.”)
5: for all ordered sequences ap|| . . . ||aq of length t do
6: key ← ap|| . . . ||aq

7: dhtkey ← KDF(gSalt,key)
8: salt← generateSalt()
9: value← uid

10: dhtvalue← salt|| encryptKDF(salt,key)(value)
11: DHT.put(dhtkey,dhtvalue)
12: end for

Algorithms 1 and 2 describe the protocol in more detail. For registration, all
attribute combinations of length t are mapped to the user identifier and stored in
the DHT according to the procedure described in Section 2.2. When searching,
all possible combinations of the provided search attributes are ordered and used
to query the DHT (after the Section 2.2 transformation). The result will contain
the user identifier of the searchee (and possibly more hits from other users that
registered the same attributes).

Algorithm 2 Search (Scheme 1)

1: l1, . . . , ls ← User.input(“Choose attribute labels to search for (e. g., name,city,...)”)
2: v1, . . . , vs ← User.input(“Enter attribute values (a name, a city,...)”)
3: ai ← li||vi // for i = 1 . . . s
4: for i← s, . . . , 1 do
5: for all ordered sequences ap|| . . . ||aq of length i do
6: key ← ap|| . . . ||aq

7: dhtkey ← KDF(gSalt,key)
8: salt, ciphertext← DHT.get(dhtkey)
9: uid← decryptKDF(salt,key)(ciphertext) // decrypt successful = uid found

10: end for
11: end for

2.4 Scheme 2: Storing Each Attribute Individually

An alternative approach, overcoming the large DHT storage overhead of scheme 1,
is to store each attribute individually. In order to require a threshold number of
attributes to find the user identifier, a single attribute does not map directly to
the uid but to an encrypted version. The key used for the encryption is derived
using a secret sharing scheme and one share is stored with each of the attributes.
The indirection via the KDF allows us to independently tune the costs for re-
questing shares for one attribute (determined by the DHT latency and the KDF
described in Section 2.2) and for trying to combine them (determined by the
KDF used here). Furthermore, a bloom filter bfi is attached to each share, to
help finding the right shares to combine with, which is important for popular
attributes with large response sets:

a1 7→ s1||bf1||salt1|| encryptKDF(salt1,sk)(uid)
...
an 7→ sn||bfn||saltn|| encryptKDF(saltn,sk)(uid)
where sk can be recovered with t of the shares s1 . . . sn.

Encrypting the user identifier under different keys (due to different salts) also
yields different ciphertexts. This is important as otherwise, searching e. g., for
a certain firstname-lastname combination and getting the same ciphertext on
the right hand side, reveals that there is a person with that firstname-lastname
combination registered in the system, even if the person specified that more
than two attributes are necessary to find her. The bloom filter that is stored
with each share is created using all other n−1 shares belonging to the same key
sk. The bloom filters will furthermore be randomized (expanded and filled with
random values) in order to reduce the probability that two related shares have
too similar bloom filters.

The full paper will explain this approach in more detail, including discussions
of design decisions and properties as well as pseudocode.

3 Threat Model

We consider all information that the user gives away or generates while interact-
ing with the system as possibly sensitive. This comprises general administrative
information (existence in system, date of registration, user-identifiers), entered
information during registration (attributes, i. e., label-value pairs) as well as
search query data and behavioural data.

3.1 Adversaries and Their Capabilities

All agents in the system can possibly act in malicious ways. This comprises
nodes involved in the DHT storage, passive traffic observers and active adver-
saries (malicious users that can perform search and register operations). Their
capabilities range from sniffing traffic, crawling the DHT (performing massive
search operations), to actively inserting data into the DHT, performing traffic
analysis (e. g., analyzing query sizes), and analyzing data they might store.

3.2 Attack Scenario: Targeted crawling using brute-force

A comprehensive security and privacy analysis of the protocols, would go beyond
the scope of this paper. We therefore focus on several specific attacks, and present
one of them here (more in the full paper).

We investigate an attack scenario where the adversary tries to crawl the
system for users with specific sensitive attributes (fixing them) and wants to
find identifying information such as name and city (guessing them) for these
users.

4 Privacy Evaluation

We expect the adversary to query the specific attributes of interest and then
guessing the missing, identifying attributes by performing an exhaustive search
on their value spaces. We assume that a person’s first name, last name, and
the city the person is located at are among the popular and identifying search
attributes.

To get evaluation results reflecting realistic distributions of values for these
attributes, data from the U.S. census was used as input for the following calcu-
lations; properties and shortcomings thereof are discussed in the full paper.

4.1 Brute-force Probabilities Scheme 1

We investigate the success probability of an adversary, when trying to guess
one of the attributes by brute-force, i. e., searching the whole value space. We
assume the adversary will try most likely values (those registered by most users
according to the value distribution in the population) first. Figure 2 shows the
number of combinations to test in order to cover a certain percentage of the

user population. This corresponds to the costs of an adversary as in scheme 1,
to try one combination, one DHT get operation plus two KDF operations are
necessary. For single attributes between 180 and 3000 combinations are enough
to find a target with 50% success probability (4600 to 60 Million combinations
for 100%). When the combination of two attributes has to be guessed, this
increases to around 107 combinations for 50% success probability and up to 1015

combinations to search the whole value space.
Scheme 2, which we will discuss in more detail in the full paper, can be tuned

to achieve comparable security to that of scheme 1, at the cost of slightly more
work for legitimate users.

 0

 0.2

 0.4

 0.6

 0.8

 1

10^0 10^2 10^4 10^6 10^8 10^10 10^12 10^14 10^16

C
D

F

combinations

brute-force costs of guessing attributes (scheme 1)

firstname
city

lastname
firstname+lastname

lastname+city

Fig. 2. CDF of brute-force success after trying a certain number of combinations (most
likely ones first) for different attributes.

5 Discussion

The results presented in the previous section describe the gap between the search
effort of a legitimate user and the cost of an adversary trying to find user identi-
fiers despite knowing fewer attributes than required. For scheme 1, the former is
constant in terms of DHT operations, the latter depends on the number and kind
of unknown attributes, as shown in Figure 2. The adversary’s costs for only one
attribute are rather low, as expected. They can be tuned by KDF parameters
but this will also affect the performance for legitimate users. The gap increases,
however, combinatorially with the number of attributes the adversary has to
guess. Already for two unknown attributes this might frustrate an attack: When
tuning the KDF operations to take one second (delay for a legitimate user), an
adversary with the same computational power as the user would need about 6
weeks to find the correct combination with 50% probability. The gap is not a
global system parameter but can be tuned by each user individually (by choosing
an individual threshold t for the registered information) but also depends on the
adversary’s knowledge about a target user.

In the full paper we analyze other kinds of attacks, such as determining the
existence of a user in the system using fewer than t attributes and learning other
attributes when already knowing t attributes.

6 Conclusion and Future Work

We presented two approaches to realize a targeted user search in a Decentralized
Online Social Network. The search protocols implement a knowledge threshold,
allowing the users to protect their user identifier from adversaries that do not
possess enough information about them while legitimate users, who know enough
about the searchee, are able to find her. We described the protocols in detail,
sketched a threat model, and evaluated selected properties using real world data.
The evaluation yielded insights into the brute-force costs of an adversary, which
depend on the user defined knowledge threshold and the knowledge of the adver-
sary about the target user. The results suggest that for common attributes, the
proposed protocol offers promising protection against an adversary that knows
at least two or three fewer attributes than required by the user.

In the full paper we will explore more attacks and evaluate the second proto-
col. Furthermore, we suggest improvements for the protocols such as weighting
attributes differently when computing the threshold number and possibilities for
combining the two approaches.

7 Acknowledgements

Oleksandr Bodriagov and Guillermo Rodŕıguez Cano contributed to joint dis-
cussions of the ideas in Section 2. Some of the ideas were also discussed with
Thomas Paul.

References

1. Bai, X., Bertier, M., Guerraoui, R., Kermarrec, A.M., Leroy, V.: Gossiping person-
alized queries. In: Manolescu, I., Spaccapietra, S., Teubner, J., Kitsuregawa, M.,
Léger, A., Naumann, F., Ailamaki, A., Özcan, F. (eds.) EDBT. ACM International
Conference Proceeding Series, vol. 426, pp. 87–98. ACM (2010)

2. Baset, S., Schulzrinne, H.: An analysis of the Skype peer-to-peer internet telephony
protocol. CoRR abs/cs/0412017 (2004)

3. Bender, M., Michel, S., Triantafillou, P., Weikum, G., Zimmer, C.: Minerva: Collab-
orative p2p search. In: Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L., Larson,
P.Å., Ooi, B.C. (eds.) VLDB. pp. 1263–1266. ACM (2005)

4. Facebook: Introducing graph search (2013), https://www.facebook.com/about/graphsearch
5. Faroo: P2P search (2013), http://www.faroo.com/hp/p2p/p2p.html
6. Fong, P.W.L., Anwar, M.M., Zhao, Z.: A privacy preservation model for facebook-

style social network systems. In: Backes, M., Ning, P. (eds.) ESORICS. LNCS, vol.
5789, pp. 303–320. Springer (2009)

7. Li, J., Loo, B.T., Hellerstein, J.M., Kaashoek, M.F., Karger, D.R., Morris, R.: On
the feasibility of peer-to-peer web indexing and search. In: Kaashoek, M.F., Stoica,
I. (eds.) IPTPS. LNCS, vol. 2735, pp. 207–215. Springer (2003)

